(1) Find the syen subgrougs of $\omega_{12} \times \mathbb{Z}_{2}$
(a) 1tew mung we there?

Let $n p=$ number of sylen p-sulgrany
S3 np||G| $\Leftrightarrow n \mathrm{n} / 24 \leftrightarrow n \mathrm{n} / 2^{3} \cdot 3$ $\mathrm{np} \equiv 1 \mathrm{~mol} \rho$
$x=2$
$\left.\begin{array}{l}n_{2} / 24 \\ n_{2}=1 \bmod 2\end{array}\right\} n_{2} \in\{1,3\}$
$h_{n}=3$

$$
n p \in\{1,4\}
$$

Find the Sylaw 3 -sulgroups

$$
\begin{aligned}
& N_{1 L} \times\{e\} \& \omega_{12} \times \mathbb{Z}_{2} \\
& { }^{C_{\text {as }}}\left[\omega_{12} \times \mathbb{Z}_{2}: \omega_{12} \times\{e\}\right]=2
\end{aligned}
$$

So me muy fand the sylaw 3 silgrays

Lot ρ be eng Syla 3 -sulgroys of ω_{12} $\left\{g^{\operatorname{Pg}\}}\left(\right.\right.$ for $g \in N_{n} \times z_{2}$) we the set of all sylem 3-subyroups of $V_{2} \times Z_{2}$
these are by nomulit in $\omega_{12}+\{e\}$
Find a sylan 3 -silgroys of ω_{12}
(wo st $P \leqslant N_{12}$ and $|P|=3$)
of $\langle(135)(246))$
$N_{n}: n_{3} \in\{1,4\}$ claim $n_{3}=1$ in D_{12}
Suppose nab, else $n_{3}=4$
So $M_{1}, R_{1}, P_{3}, R_{4} \approx \mathbb{Z}_{3}$

$$
\begin{aligned}
p_{i} & \wedge p_{j}=\{x\} \quad \text { if } i \neq j, \text { If } x=e \\
& \text { If }+x e \Rightarrow p_{i}: l_{j}
\end{aligned}
$$

\# of elemat

$$
\begin{aligned}
& 1+4 \times 2+1+3+\tau^{5} \geqslant 13 \geqslant 12
\end{aligned}
$$

So we have a ceigue sylen

$$
\Rightarrow n_{J}=1
$$

\Rightarrow Thas $\quad \rho=\langle(123)(456)\rangle$ is unique sylew 3 -silgioys of ω_{12}
so $P+\{e\}$

$$
\text { of } \omega_{12}+\mathbb{Z}_{2}
$$

(2) Sylaw 2-cubgroyst

$$
n_{3} \in\{1,3\}
$$

Noto that, in N_{12}, n_{2}
We'll find Ito sylew 3 -subgraus ω_{12}, sags Q_{1}, Q_{2}, Q_{J} then

$$
Q_{i} \times \mathbb{Z}_{2}
$$

Let $p_{i}=\left(n_{i}, v^{3}\right)$

$$
\simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

$$
\begin{aligned}
& r=(12)(63)(45), \tau^{3}=(14)(25)(36) \\
& \mu \tau^{3}=(15)(25)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & Q_{1}=\left\{e, r, \tau^{3}, r \tau^{3}\right\} \\
\Rightarrow & W_{R} \times \mathbb{Z}_{2} \text { we } \\
& a_{1} \times \mathbb{Z}_{2}, a_{2}+\mathbb{Z}_{2}, Q_{3} \times \mathbb{Z}_{2}
\end{aligned}
$$

62 1029, 1536 : Groys ordes ane nat simple
1029: $53 \Rightarrow$ normul Sylaw 7 -sulgroups

$$
1536:=2^{9} \cdot 3
$$

$$
n_{2} \equiv 1 \bmod 2 \quad \cos y \quad n_{2}=1 n_{2}=3
$$

cre possible as $n_{2} / 2^{9} \cdot 3$
Seypose $n_{2} \neq 1 \Rightarrow n_{2}=3$
Let G out on the set of sylaw 2 -subgroups by cangingatien
Git mip $G \xrightarrow{b} S_{3}$

$$
\begin{aligned}
& \text { Kenel }(l)=\{e^{3} \text { or } \underbrace{\operatorname{Ker}(l)-G}_{\text {If } \mathrm{Ker}(g)=G} \text {, the } \\
& \begin{array}{l}
g P_{g-1}^{-1}=\rho 1 \text { foall } g \in G \text {, some } \\
\text { Syen suly rop } \rho
\end{array}
\end{aligned}
$$

$\Rightarrow P$ is novall

$$
\left.\begin{array}{l}
G \simeq \frac{G}{\operatorname{ken}(l)} \simeq \underbrace{\operatorname{Em}(l)}_{S_{3} o \mathbb{Z}_{3}} \\
\operatorname{ka}(f)=\left\{\delta \in G \mid s P_{8}-1=p \quad \forall P\right. \text { in tet set }
\end{array}\right\}
$$

Clinime
Su it tot unigue subgroy of corler 24 suith that no sylar p-suldioy it $n_{2}=1$ or $3 \Rightarrow 3$ subgroup of acber 8 $n_{3}=1$ or $4 \Rightarrow 4$ sulgrouss of arder 3
Lhee: $\frac{G}{3}$ substorst, say the set af syla, by canjugatien, io $G \xrightarrow{ }$ group ham S_{4} is a group ham in fonff surh on atten is always
$y \in G$ st $g^{\prime} \rho_{i}=P_{j}$
Trensithe subgroys of S_{4}

$$
\begin{aligned}
& S_{4}(13) \cdot 1=3 \\
& \quad(a b) \cdot a=b \\
& S_{4}, A_{4}, K_{4}, D_{8}, Z_{4} \\
& (a b c) \cdot a=b \\
& G \xrightarrow{b} S_{4}
\end{aligned}
$$

Im(l) trensictro 20

$$
\operatorname{Im} f \in\left\{S_{u}, A_{u}, U_{u}, Z_{u}, \Delta \varnothing_{8}\right\}
$$

$$
N \simeq H, \quad G^{-1}(N) \subseteq G
$$

Guer $\xrightarrow{b} A_{4}$ Fond $N \subseteq A_{4}$, then

$$
f^{-1}(N)=G
$$

so if $|N|=4 \Rightarrow f^{-1}(N)=8$ io a sglaw 2 subyrous

Syfar 2 sulfras is A_{φ}

$$
\begin{aligned}
& n_{2} / 12 \Rightarrow 1, y_{1}, 3,4, G_{1}, 2 \\
& n_{2}=1 \bmod 2 \Rightarrow 1,3
\end{aligned}
$$

Assignment 3
at ave in example of a groub a nat nilpoted nor "S S_{n} " ser or ion nut then eres essis $H \div G$ st $|H|=n$

Ex
$\omega_{2 m}($ anck 2 m$), \quad D_{i c_{12}}, \ldots$
Q2 Sprose $G, 14$ abehon. Find nuala vemaphism clowsy of san dered proclunt grops mhich ore abelien

$$
\begin{aligned}
& S=\left\{G x_{Q_{1}} H, G x_{a_{2}} H_{A}, \text { H } x_{e_{m}} G \ldots\right\} \\
& d, G \longrightarrow \operatorname{Ant}(H)
\end{aligned}
$$

How may sloment of S we alelias? At Coust one, nemely $G \times H \approx K \times a$ clainn
no athe semidirect produt group is Ablinen. Soy a not H io

$$
\begin{aligned}
& \left.\begin{array}{l}
(y, h)\left(y^{\prime}, h^{\prime}\right)=\ldots \\
\left(y, h^{\prime}\right)(y, h)=\ldots
\end{array}\right\} \text { mus } \theta \text { acre for all } g^{\prime}, h^{\prime} \\
& Q_{h}\left(y^{\prime}\right)=g^{\prime} Q_{h}(y) \Rightarrow \text { must hand for } h^{\prime}=e \quad g=e \\
& \Rightarrow \varphi_{h}(g)=\delta \quad Y_{0} \Rightarrow \varphi_{h}=i d
\end{aligned}
$$

as Ant $\left(D_{r_{12}}\right) \approx D_{12} \quad\left(\left|D_{12}\right|=12\right.$
Fit

$$
D_{1 z_{12}}=\left\{a^{i}, x_{a} / 0 \leqslant i \leqslant 5,0 \leqslant j \leqslant 5\right\}=\langle x, 9\rangle
$$

group oration it N. e_{12}

$$
\begin{array}{lr}
\left(a^{i}\right)\left(a^{j}\right)=a^{i+j} & x^{2}=a^{3} \\
\left(x a^{j}\right)\left(a^{j}\right)=x a^{i+j} & x a^{-a^{-1} x} \\
\left(x a^{i}\right)\left(x a^{j}\right)=a^{3+j-i} & \\
\left(a^{i}\right)\left(x a^{j}\right)=x a^{j-i} & \\
\lg \left|a^{0}=e\right| a^{1}\left|a^{2}\right| a^{3}\left|a^{4}\right| a^{5}
\end{array}
$$

| y | $x a^{0}$ | $x a$ | $x a^{2}$ | $x a^{3}$ | $x a^{4} / x a^{5}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\|y\|$ | 4 | 4 | 4 | 4 | 4 | 4 |

Let $f: D c_{12} \longrightarrow D_{i c_{12}}$
ussume it pneserves ordors, then
f: a $\longrightarrow a$ or a

$$
x \longmapsto x a^{i} \quad(0 \leq i \leq 5)
$$

$$
f \underbrace{f\left(a^{i_{1}} x^{j 1} a^{i_{1}} x^{j 2} \ldots a^{i_{n}} x^{j_{n}}\right)}_{\in D_{i_{1}}}=f(a)^{i_{1}} f(x)^{j_{1}} \ldots f\left(x^{i_{n}}\right.
$$

Let $f_{ \pm k}=\left\{\begin{array}{l}a \longmapsto a^{ \pm} \\ x \longmapsto x a^{k}\end{array}\right.$
Example: $f_{-2}: a \longmapsto a^{-1}$

$$
x \longrightarrow x a^{2}
$$

Claim: all fei are cutomerphims (chect henomaphion)

$$
\begin{aligned}
& f \pm u\left(x a^{i} \times a^{j}\right)=f_{ \pm u}\left(x a^{i}\right) f \pm k\left(x a^{j}\right) \text { ? } \\
& f_{a^{ \pm(3+j-i)}} f_{k}\left(a^{3+j-i}\right)
\end{aligned} \underbrace{\left(+a^{u \pm i}\right)\left(x a^{4 \pm j)}\right.}_{a^{3} a^{4 \pm j-4 \neq j}}=a^{3 \pm j \neq i}
$$

$$
\operatorname{Auf}\left(N_{i, 12}\right)=\{f+i, f-j \mid 0 \leq i \leq 50 \leqslant j \leqslant 5\}
$$ ancle 12 O

$A_{4}, \omega_{i c_{12}}, D_{12}$

Identition

$$
f=f+1
$$

$a \stackrel{l}{\longrightarrow} a \longmapsto a$
$x \stackrel{b}{\longrightarrow} \times a \xrightarrow{b}+a a^{+l>}+a^{2} \stackrel{b}{>} x a^{5} \longrightarrow x a^{6}=x$

$$
\Rightarrow|x|=6
$$

$f=y$
$\left|b_{1}\right|=2 ; a{ }^{8} a^{1} \xrightarrow{8} a$
$x \mapsto t h \longmapsto+a a^{-1}=0$

$$
\begin{aligned}
& \frac{y=f-2}{y} \\
& a a^{-1} \stackrel{s}{\longrightarrow}> \\
& x+a^{2} \longmapsto\left(x a^{2} a^{-2}\right)=x \\
& |f-2|=2
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{Ant}\left(D_{c_{12}}\right) \cong D_{12} \\
& D_{12}=\langle r, \tau\rangle \\
& f_{i 1} \mapsto \tau \\
& l_{=1} \mapsto r
\end{aligned}
$$

Assignment 4
Q1 Prove that of wip-1 (me senidouct then a non-tiblu groy of ocolut pis anser Sulntes
"Let a the a nen Alath grap of ards

Connet we enstience of groy to prove

$$
\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1} \quad\left(\begin{array}{cc}
\mid \text { Aut }\left(C_{p}\right) \mid=p-1 & \text { is } \\
\text { subient }
\end{array}\right)
$$

For this, conside $x \xrightarrow{Q_{n}} x^{4}$ whene $\langle x\rangle=C_{p}$

$$
\begin{gathered}
\mathscr{Q}_{k} \circ Q_{l}=Q_{k l} \text { mdp } \\
\Rightarrow \operatorname{Ant}\left(C_{p}\right) \triangleq\left(Z_{p}\right)^{*} \\
Q_{k} \mapsto[k]
\end{gathered}
$$

Sind q / p^{-1} and y 3 a prime
$\exists H \leqslant \operatorname{Aut}\left(C_{p}\right)$ st $(H)=q$
and $H=\langle Q\rangle$
$\left|C_{p} \times C_{q}\right|=p q \quad$ (ly conslinition)
If we find a non tivial mep
$C_{q} \longrightarrow$ Aut $\left(C_{p}\right)$, suy Q, then
ly Assiznment 3 Ce 2
$C_{p} x_{a} C_{q}$ is non-Abelian
Let $C_{\varepsilon}=\langle y\rangle$,
let $Q: C_{y} \rightarrow \operatorname{dut}\left(C_{p}\right)$ by $Q(y)=\varnothing$

$$
\Rightarrow \operatorname{sm} \varphi=H \leqslant \operatorname{Ant}\left(C_{p}\right)
$$

$\Rightarrow C_{p}{ }_{k a} C_{q}$ is exis clesired group

Le2 $S_{3} \cong\left\langle x, y \mid x^{2}, y^{3}(x y)^{2}\right\rangle=G$
$G=F(x y), N=$ normal cloreve of $\left\{x^{2}, y^{2}, x y x y\right\} \leqslant F(x y)$
prof
(1) Epimarphism $G \xrightarrow{Q} S_{3}$
(2) Epimerphim at en isomerphim

Step (1)
Let $S=\{x, y\}$,
define $\varphi: S \rightarrow S_{3} \quad x \longmapsto(12)$

$$
y \longmapsto(123)
$$

By FTGP
$\tilde{Q}: F(x, y) / N(=G) \longrightarrow S_{3}$
if $\bar{Q}\left(r_{i}\right)=e \in S_{3}$ for r_{i} relatex
$\bar{Q}: F(5) \rightarrow S_{3}$
cheell

$$
\begin{aligned}
\left.\bar{Q} C x^{2}\right) & =\overline{\mathscr{C}}(x \overline{\mathscr{C}}(x)=\mathscr{Q}(x) \mathscr{C}(x) \\
& =(12)(12)=e \in S_{3} \\
\bar{Q}\left(y^{3}\right) & =\overline{\mathscr{C}}(y) \overline{\mathscr{C}}(\bar{y}) \overline{\mathscr{C}}(y)=\ldots \\
\cdots & =(123)^{3}=e \in S_{3} \\
\bar{Q}\left((y)^{2}\right) & =e^{\in} S_{3}
\end{aligned}
$$

\Rightarrow thes a homenorphim $G \rightarrow S_{3}$,
lut $\langle\mathscr{C}(x), \mathscr{C}(y)\rangle=S_{3}$ so at surjecteve
stop 2 : Q is iscmanphim

$$
|G| \leqslant\left|S_{3}\right|=6
$$

Nrow a grogh: verties = coseto wN

$$
\text { eclyes }=\text { palfing ly } x y, x^{1}, y^{-1}
$$

If sx yroph is clocel wde theor peratione y io vor velices hive, edgy, stertoms at ext veitex, labilad $y x^{-1,}, y, y^{-1}$

$$
\begin{aligned}
& x \times N=N=/ N \\
& \operatorname{yy} \operatorname{y}=N=1 N \\
& x y x y N=N \\
& \Rightarrow \underbrace{w \xrightarrow{x} \rightarrow w}_{x} \\
& \Rightarrow \quad w-y>y w \xrightarrow{y}>y y w
\end{aligned}
$$

$\Rightarrow y \times y w \longleftarrow x x_{x}$
$x_{y}+y \omega=\omega \xrightarrow[y]{\longrightarrow} y w$

$64\left(x_{1}, n, x_{n} \mid x_{i} x_{j}=x_{i+j \text { maln }}\right) \cong G$
(1) $G \rightarrow C_{n} \quad x_{i}=x^{i} \subset C_{n}$

$$
\begin{aligned}
& x_{i+j}=x_{i+j j} \ln \\
& x^{i} x^{j}=x^{i+j \operatorname{maln}}
\end{aligned}
$$

(2) Q is iscmerphism

The relatists face $x_{j}=\left(x_{1}\right)^{j}$
io $\left(x_{1}\right)^{6}\left(x_{1}\right)^{-1} \in N=$ normal clowe

